
Ensuring Distributed Accountability for Data
Sharing in Cloud Using AES and SHA

Vikas Vitthal Lonare1, Prof.J.N.Nandimath2,

1 PG Scholar, Computer Department, SKNCOE, Pune, Savitribai Phule Pune University,
2Professor, Computer Department, SKNCOE, Pune, India

Abstract-Cloud computing is used to provide scalable services
which are easily used over the internet as per the need basis.
Cloud computing is a technology which uses internet and
remote servers to store data and application. In cloud, there is
no need to install particular hardware, software on user
machine, so user can get the required infrastructure on his
machine in cheap charges/rates. A major feature of the cloud
services is that user’s data are remotely processed in unknown
machines that users are not operating. Cloud computing
based solutions are becoming popular and adopted widely
because of its low-maintenance and commercial
characteristics. While using these services provided by cloud
computing, users fear of losing their own data. The content of
data can be financial, health, personal. To resolve this
problem, we have proposed information accountability in
decentralized format to keep track of the usage of the user’s
data over the cloud. It is object oriented approach that
enables enclosing our logging mechanism together with user’s
data and apply access policies with respect to user’s data. We
use JAR programming which provides the dynamic and
traveling object functionality and to track any access to user’s
data will call authentication and automated logging
mechanism to the JAR files. Each access to user’s data will be
getting recorded in separate log file. To provide robust users
control, distributed auditing functionality is also provided to
track the usage of data. The proposed system also provides the
authentication mechanism using external channels and also
makes a log of user details from whom the cloud data is
accessed. Proposed system uses the Advanced Encryption
Standard AES Algorithm along with Secure Hash Algorithm
to enhance and provide robust security for data stored in
cloud. Data owner will provide the type of access and allowed
location to view his data and based on that, authorized cloud
users can access the data over the cloud environment. In order
to avoid modification in original private key file, data user’s
can verify the integrity of received private key file from the
data owner. Only data owner can retrieve the detail access log
information and download log information of his data as per
requirement at any time. This paper proposes a model to
provide strong security mechanism for Authentication,
Authorization and Accountability of data sharing in the cloud
environment.

General Terms: Cloud Computing, Cloud Services, Data
Sharing

Keywords: Distributed Accountability, Cloud, Encryption and
Decryption, Key Generation, JAR Authentication, Secure Hash,
Advanced Encryption Standard

1. INTRODUCTION
Cloud computing is the delivery of computing services over the
Internet as per requirement. Cloud services allow individuals and

businesses to use software and hardware that are managed by third
parties at remote locations. Examples of cloud services include
online file storage system, social networking sites, webmail, and
online business applications. The cloud computing model allows
access to information and computer resources from anywhere and
anytime. Cloud computing provides a shared pool of resources,
including data storage memory space, networks, computer
processing power, and specialized corporate and user applications.
Cloud computing has been developed by the U.S. National
Institute of Standards and Technology (NIST). Cloud computing
is a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources e.g., networks,
servers, storage, applications, and services that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. This cloud model promotes
availability and is composed of five essential characteristics, three
service models, and four deployment models. The characteristics
of cloud computing include on demand self service, broad
network access, resource pooling, rapid elasticity and measured
service. The cloud computing service models are Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as
a Service (IaaS). Deployment models of cloud services are public
cloud, private cloud, community cloud, hybrid cloud. Cloud
services are popular because they can reduce the cost and
complexity of owning and operating computers and networks.
Some other benefits to users include scalability, reliability, and
efficiency. From a technical perspective, cloud computing
includes service oriented architecture (SOA) and virtual
applications of both hardware and software. Within this
environment, it provides a scalable services delivery platform.
Cloud computing shares its resources among a cloud of service
consumers, partners, and vendors. By sharing resources at various
levels, this platform provides various services, such as an
infrastructure cloud (hardware or IT infrastructure management),
a software cloud (software, middleware, or traditional customer
relationship management as a service), an application cloud
(application, UML modeling tools, or social networks as a
service), and a business cloud for instance, business processes as a
service. While enjoying the convenience brought by this new
technology, users also start worrying about losing control of their
own data. Such fears are becoming a significant barrier to the
wide adoption of cloud services. Our proposed Cloud Information
Accountability CIA framework provides end-to end accountability
in a highly distributed fashion. By using proposed model, we can
provide strong security mechanism for Authentication,
Authorization and Accountability of data sharing in the cloud
environment. There are 7 phases of accountability as follows,
1. Policy setting with data
2. Use of data by users
3. Logging
4. Merge logs
5. Error correctness in log
6. Auditing
7. Rectify and Improvement.

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 652

Fig1: Phases of Accountability

In the Fig1 Steps of accountability is given. These are 7 steps each
step is important to perform next step. Accountability is nothing
but validation of user actions, means user having rights for
accessing this data or not. Suppose user will do misuse of data or
resources then network or data owner will take action on it so,
businesses and government should not bother about their data on
cloud.

2. RELATED WORK
Smitha S, Dan Lin proposes a novel highly decentralized
information accountability framework [1] to keep track of the
actual usage of data in cloud using JAR files. They have used
oblivious hashing and SAMPL authentication. They have
implemented the Push-Pull log mode.
Qian Wang, Cong Wang present third party auditor scheme in
cloud computing using RSA and Bilinear Diffie Hellman
techniques [2].
Parikshit Prasad, R Lal present a system in which data
classification done by Owner before storing data [3]. Data
categorized on the basis of Confidentiality, Integrity and
Availability based on the Classification Algorithm.
P L Rini, Anand N Provides innovative approach for
automatically logging and auditing mechanism using BASE64
encoding algorithm [6] to protect the data from attackers.
A. Squicciarini , S. Sundareswaran and D. Lin[12], authors gives
a three layer architecture which protect information leakage from
cloud, it provides three layer to protect data, in first layer the
service provider should not view confidential data in second layer
service provider should not do the indexing of data, in third layer
user specify use of his data and indexing in policies, so policies
always travel with data.
B. Chun and A. C. Bavier[13], authors present accountability in
federated system to achieve trust management. The trust towards
use of resources is accomplished through accountability so to
resolve problem for trust management in federated system they
have given three layers architecture, in first layer is authentication
and authorization in this authentication does using public key
cryptography. Second layer is accountability which perform
monitoring and logging. The third layer is anomaly detection

which detects misuse of resources. This mechanism requires third
party services to observe network resources.

3. PROPOSED SYSTEM
Cloud computing is a large infrastructure which provide many
services to user without installation of resources on their own
machine. This is the pay as you use basis model. Examples of the
cloud services are Yahoo email, Google, Gmail and Hotmail.
There are many users, businesses, government uses cloud, so data
usage in cloud is large. So data maintenance in cloud is complex.
Many Artists wants to do business of their art using cloud. For
example, one of the artist want to sell his painting using cloud
then he want that his paintings must be safe on cloud and no one
can misuse his paintings. Here our proposed model can be used to
achieve this security issue. The proposed model is suitable for the
image files shared over the cloud environment. A user, who
subscribed to a cloud service, usually needs to send his/her data as
well as associated access control policies to the service provider.
These access control policies should be define by the data owner.
After the data received by the cloud service provider, the service
provider will have granted access rights, such as read, write, and
copy, on the user’s data. In order to track the actual usage of the
data; we proposed model which satisfy the following
requirements:
 1. The logging should be decentralized in order to adapt to the
dynamic nature of the cloud. More specifically, log files should be
tightly bounded with the corresponding data being controlled, and
require minimal infrastructural support from any server.
2. Every access to the user’s data should be correctly and
automatically logged. This requires integrated techniques to
authenticate the entity that accesses the data, verify, and record
the actual operations on the data as well as the time that the data
have been accessed.
3. Log files should be reliable and tamper proof to avoid illegal
insertion, deletion, and modification by malicious parties.
Recovery mechanisms are also desirable to restore damaged log
files caused by technical problems.
4. Log files should be sent back to their data owners periodically
to inform them of the current usage of their data. More
importantly, log files should be retrievable at anytime by their
data owners when needed regardless the location where the files
are stored.
5. The proposed technique should not intrusively monitor data
recipients’ systems, nor it should introduce heavy communication
and computation overhead, which otherwise will hinder its
feasibility and adoption in practice.
6. The proposed system should provide strong data security
mechanism to protect data from network intruders. This includes
strong encryption and decryption algorithm as well as private key
verification to avoid unauthorized access to key and data over the
cloud.
7. Only authorized users can access the data based upon the access
privileged and location for which they are authorized to access the
data.

Fig2:
Accountability in cloud

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 653

In Fig 2 working of accountability mechanism in cloud is shown.
When user will access data then log of each access is created by
logger and periodically sent to log harmonizer, log harmonizer
send these logs to data owner and data owner can see logs and
take appropriate action if he wants. State transition diagram is
machine which shows no. of states, machine take input from
outside world and each input can produce machine to go next step.
Following transition diagram shows the different states of
accountability mechanism in cloud i.e. how it changes from one
state to next state.

Fig3: State Transition Diagram

Where,
0: Unsuccessful
1: Successful
Transitions are:
S0: Data Owner will send data to logger.
S1: Data Owner will create logger which is a jar.
File to store data and policies.
S2: Authentication of CSP to JAR file.
S3: Authentication of user.
S4: owner can see merge log.
Input: = {0, 1}
Representation of
A= ({S0, S1, S2, S3, S4,} {0, 1}, δ, S0, S4)
Input given 11011011
Expected output
δ(S0,1) = S1
δ(S1,1) = S2
δ(S2,1) = S3
δ(S3,1) = S4
δ(S4,1) = S0
In accountability mechanisms the log records are generated as
access of data in jar happened then it create log record log rec
(Lr).
Lr = r1, r2, r3, r4... rk.
Parameters uses for log record are:
rk = (id, action, T, loc, h((id, action, T, loc)ri-1…r1), sig)
Where,
rk = log record
id = user identification
action = perform on user's data
T = Time at location loc
loc = Location
h((id, action, T, loc)ri-1…r1) = checksum component
sig = Signature of record by server
Checksum of each record is calculated and it is stored with data.
Checksum is computed using hash function
H[i] = f(H[i − 1] ,m[i]),

To achieve authentication and non-repudiation purpose within
cloud computing environment, digital signature has assumed great
significance. There are various digital signature algorithms which
involves the generation of message digest (hash). MD5 and SHA-
1 are well known digital signature generation algorithms and
comparative study of these are described with the help of table:

Table1: Comparison of MD5 and SHA

The study shows that MD5 is much faster than SHA-512 digital
signature algorithm, but with respect to security concerns SHA-
512 is more secure than MD5 and no claim of successful attacks
with optimal time complexity on SHA-512 has been done so far.
The study of various cryptography (Symmetric/Asymmetric)
encryption and digital signature algorithms helps to choose the
best one from each category to be used in proposed cryptographic
module. The symmetric and asymmetric encryption algorithms to
be used are AES and ECC respectively. The SHA-512 digital
signature generation algorithm is used in combination with ECC
asymmetric key encryption algorithm. These algorithms are
described as follows:
AES (Advanced Encryption Standard): The basic steps in
algorithm are stated as:
a) Key Expansion - round keys are derived from the cipher key
using Rijndael's key schedule
b) Initial Round AddRoundKey - each byte of the state is
combined with the roundkey using bitwise xor
c) Rounds-
1. SubBytes - a non-linear substitution step where each byte is
replaced with another according to a lookup table.
2. ShiftRows - a transposition step where each row of the state is
shifted cyclicallya certain number of steps.
3. MixColumns - a mixing operation which operates on the
columns of the state, combining the four bytes in each column.
4. AddRoundKey
d) Final Round (no MixColumns) - 1. SubBytes 2. ShiftRows 3.
AddRoundKey
e) Key generation- This module handles key generation by the
cryptographic module at client side. The server generates unique
keys for users once they authenticate themselves with the server.
The key is generated using instances of AES key generator class.
This key is then transferred to the cloud client via the mail-server
through a mail which receives and stores a copy for it for
decrypting purpose.

3.1 Proposed Architecture
The proposed architecture consists of Cloud Service Provider
CSP, Glassfish Server, MySQL Database and related peripherals.
We have separate modules as Data Security Module and Key
Verification module to enhance the security of data over cloud
environment.

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 654

Fig4: Architecture of proposed system

3.2 Working
Data owner will sign in and select the data file which he wants to
upload on cloud. This data file will be combining with some
details like File name, user ID, Time. Data owner will receive the
unique private key file for his file. He will upload the file and
assign the access related permissions with respect to file. Data file
will be converted into JAR (Java Archive) format. Then, this file
will be get processed by the data security module. Here, strong
encryption and decryption process is used to secure the file.
Processed file will be getting stored in database by the CSP. Once
any data user wants to access file then he has to login with valid
credentials and request for the file. Only data owner can send the
private key file to the data user via email. User details will be
verified by the CSP and then JAR file will be sent to the user upon
successful verification. We have added Key Verification module
to check whether the received key has been modified in between
transition or not. Received key should match with the original
key. Data user will validate the key and provide the valid key
details in order to access the JAR file. Data user can access the
data as per the access rights he has. No other user can access the
JAR file because; all this access will be defined by data owner
only. All the activities done by the data user will be get logged
and that log file will be retrieve by data owner as per the need. So
data owner can view two different logs like Access Log and
Download Log as per requirement.
Access Log Details:
{AccessID, UserID, File Name, AccessType, Status, Date-Time,
Location, Hash Verification}
Download Log Details:
{DownloadID, UserID, File Name, Date-Time, Location, Hash
Verification}

3.2.1 Advanced Encryption Standard Algorithm: Advanced
Encryption Standard (AES) is the current standard for secret key
encryption. AES was created by two Belgian cryptographers,
Vincent Rijmen and Joan Daemen, replacing the old Data
Encryption Standard (DES). The Federal Information Processing
Standard 197 used a standardized version of the algorithm called
Rijndael for the Advanced Encryption Standard. The algorithm
uses a combination of Exclusive-OR operations (XOR), octet
substitution with an S-box, row and column rotations, and a
MixColumn. It was successful because it was easy to implement

and could run in a reasonable amount of time. Some of the
applications of AES are still inflexible to various type of cracking
techniques, which makes it a better choice even for top secret
information. AES data encryption is more scientifically capable
and graceful cryptographic algorithm, but its main force rests in
the key length. The time necessary to break an encryption
algorithm is straightly related to the length of the key used to
secure the communication. AES allows you to choose a various
type of bits like 128-bit, 192-bit or 256-bit key, making it
exponentially stronger than the 56-bit key of DES.
AES Encryption Algorithm:
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
Begin
byte state[4,Nb]
state = in
AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr–1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state,w[round*Nb,(round+1)*Nb-1])
end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
out = state
end

AES Decryption Algorithm:
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]
state = in
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
for round = Nr-1 step -1 downto 1
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state,w[round*Nb,(round+1)*Nb-1])
InvMixColumns(state)
end for
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])
out = state
end

The below table shows the comparison of DES and AES
algorithms based upon the various parameters.

Table2: Comparison of AES and DES

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 655

3.2.2 Secure Hash Algorithm: A hashing algorithm is a
cryptographic algorithm that can be used to provide data integrity
and authentication. SHA typically used in password based
systems to avoid the need to store plaintext passwords. A hashing
algorithm is a deterministic function that takes in an arbitrary
length block of data, and returns a fixed-size string, which is
called the hash value. A message is transmitted with its hash,
allowing the recipient to hash the message and compare outputs.
By signing the hash before sending, the sender can prove that the
message has not been tampered. The sender can hash a file before
sending recipient. The recipient will then hash the file received
and check the hashes match. This can also be used for the storage
of files, to ensure files have not been corrupted or modified. A
secure hashing algorithm has three main properties:
1. Preimage resistance: Given a hash value, it should be difficult
to find any message that hashes to that value. 2. Second-
preimage resistance: Given an input, it should be difficult to find
another input, which is different to the first, where they both hash
to the same value. 3. Collision resistance: It
should be difficult to find two different inputs such that have the
same hash values.
Elliptic Curve Cryptography (ECC) with SHA-512: An elliptic
curve is given by an equation in the form of

The finite fields those are commonly used over primes (FP) and
binary field (F2n). The security of ECC is based on the elliptic
curve discrete logarithm problem (ECDCP).

4. PERFORMANCE STUDY
We first bring out the settings of the test environment and then
present the performance study of our system. We have tested our
application in small private cloud network. In the experiments, we
first examine the time taken to create log file and then measure the
overhead in the system. With respect to time, the overhead can
occur at three points: at the time of the authentication, during
encryption of JAR file and at the time of the merging of the logs.
Also, with respect to storage overhead, we notice that our
architecture is very lightweight, in that the only data to be stored
are provided by the actual files and the associated logs. Further,
JAR appears as a compressor of the files that it handles. As
proposed, multiple files can be managed by the same logger
component. To this extent, we checked whether a single logger
component, used to manage more than one file, results in storage
overhead.

Fig5: Log Creation Time

4.1 Log Creation Time
 In the first round of experiments, we are concerned in finding out
the time taken to create a log file when there are entities
continuously accessing the data, causing continuous logging.
Resultants are shown in Fig. 5. It is not surprising to identify that
the time to create a log file increases linearly with the size of the
log file. Specifically, the time to develop a 100 Kb file is about
114.5 ms while the time to create a 1 MB file averages at 731 ms.
With this experiment as the baseline, one can figure out the

amount of time to be specified between dumps, keeping other
variables like space constraints or network traffic in mind.
4.2 Authentication Time
 The next point that the overhead can occur is during the
authentication of a CSP. If the time taken for this authentication is
too long; it may become a bottleneck for accessing the enclosed
data. To evaluate this, considering one access at the time, we got
that the authentication time averages around 520 ms which proves
that not too much overhead is added during this phase. As of
present, the authentication takes place each time the CSP needs to
access the data. The time for authenticating an end user is about
the same when we consider only the actions required by the JAR.
When we consider the user actions (i.e., submitting his username
to the JAR), it averages at 500ms.
4.3 Time Taken to Perform Logging
This set of experiments studies the effect of log file size on the
logging performance. We measured the average time taken to
allow an access plus the time to write the corresponding log
record. The time for allowing any access to the data items in a
JAR file includes the time to evaluate and enforce the applicable
policies and to locate the requested data items. In the experiment,
we let multiple servers continuously access the same data JAR file
for a minute and recorded the number of log records generated.
Every access is just a view request and hence the time for
executing the action is negligible. As a resultant, the average time
to log an action is about 10 seconds, which involves the time
taken by a user to double click the JAR or by a server to run the
script to open the JAR. We also took the log encryption time
which is about 300 ms (per record) and is seemingly unrelated
from the log size.
4.4 Log Merging Time
To check if the log harmonizer can be a bottleneck, we have taken
the amount of time required to merge log files. In this experiment,
we confirmed that each of the log files had 10 to 25 percent of the
records in common with one other. The exact number of records
in common was random for each repetition of the experiment. The
time was averaged over 10 repetitions. We tested the time to
merge up to 70 log files of 100 KB, 300 KB, 500 KB, 700 KB,
900 KB, and 1 MB each. We can see that the time increases
almost linearly to the number of files and size of files, with the
least time being acquired for merging two 100 KB log files at 59
ms, while the time to merge 1 MB files was 2.00 minutes.
4.5 Size of the Data JAR Files
Finally, we investigate whether a single logger, account to handle
more than one file, results in storage overhead. We have figured
out the size of the loggers (JARs) by varying the number and size
of data items held by them. We tested the accession in size of the
logger containing 10 content files (i.e., images) of the same size as
the file size expands. Intuitively, in case of large size of data items
held by logger, the overall logger also expand in size. The size of
logger grows from 3,500 to 4,035 KB when the size of content
items changes from 200 KB to 1 MB. Overall, because of the
compression provided by JAR files, the size of the logger is
commanded by the size of the largest files it holds. Results are in
Fig.6.

Fig6: JAR File Size

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 656

4.6 Overhead Added by JVM Integrity Checking
We investigate the overhead added by both the
reinstallation/repair process, and by the time taken for
computation of hash codes. The time taken for JRE
installation/repair averages around 6,500 ms. This time was
figured by taking the system time stamp at the beginning and end
of the installation/repair. To calculate the time overhead added by
the hash codes, we simply measure the time acquired for each
hash calculation. This time is taken to average around 9 ms. The
number of hash commands varies on the basis of size of the code.
If the code does not change with the content, the number of hash
commands remains constant.

5. CONCLUSION
Innovative approaches for automatically logging any access to the
data in the cloud together with an auditing mechanism. This
approach allows the data owner to not only audit his content but
also enforce strong back-end protection if needed. One of the
main features of system is, it enables the data owner to audit even
those copies of his data that were made without his knowledge.
Robust and Secure data share in cloud using secure external
channel authentication. Encryption algorithms play an important
role in data security on cloud and by comparison of different
parameters used in algorithms, it has been found that AES
algorithm uses least time to execute and it is the robust algorithm
to secure the data over cloud. This algorithm has speedy key setup
time and good key agility. It requires less memory for
implementation, making it suitable for restricted-space
environments. There are no serious weak keys in AES. Statistical
analysis of the cipher text has not been possible even after using
huge number of test cases. No differential and linear
cryptanalysis attacks have been yet proved on AES. AES provides
security to cloud users as encrypted data in the cloud is safe from
many security attacks. SHA is more secure than MD5 and no
claim of successful attacks with optimal time complexity on SHA
has been done so far. By using the proposed system, only
authorized data users can access the data as per the access rules
defined by the data owner. Hence proposed system provides
robust and secure data share for image files on cloud environment
using AES and SHA Algorithm.

6. FUTURE ENHANCEMENT
-Support a variety of security policies, like indexing policies for
text less, usage control for executables and generic accountability
and provenance controls.

-Refine approach to verify Integrity of JRE and Authentication of
JAR files in order to support multiple file formats.
-Reduce the size of JAR files to avoid communication delay and
increase the speed of JAR file uploading and downloading from
cloud environment.

REFERENCES
[1] Smitha Sundareswaran, Anna C. Squicciarini, Member, IEEE, and

Dan Lin "Ensuring Distributed Accountability for Data Sharing in
the Cloud" IEEE Trans actions On Dependable And Secure
Computing, Vol. 9, No. 4, July/August 2012

[2] Qian Wang, Student Member, IEEE, Cong Wang, Student Member,
IEEE, Kui Ren, Member, IEEE, Wenjing Lou, Senior Member,
IEEE, and Jin Li "Enabling Public Auditability and Data Dynamics
for Storage Security in Cloud Computing" IEEE Transactions On
Parallel And Distributed Systems, Vol. 22, No. 5, May 2011

[3] Parikshit Prasad,R Lal "3 Dimensional Security in Cloud
Computing" IEEE 2011

[4] Xiao Zhang, Hong-tao Du ,Jian-quan Chen, Yi Lin, Lei-jie Zeng
Ensure Data Security in Cloud Storage IEEE 2011

[5] Yubo Tan , Xinlei Wang Research of Cloud Computing Data
Security Technology IEEE 2012

[6] P L Rini, Anand N " Encoding Personal Information On Data
Sharing In Cloud Using BASE64 Algorithm" GRET 2013

[7] MdMasoom Rabbani, Ilango Paramasivam "Enhancing
Accountability for Distributed Data Sharing in the Cloud" IJET Jun-
Jul 2013

[8] P Sobha Rani, P. Suresh Babu "Achieving Information
Accountability in Cloud Computing Environment" IJCER April
2013

[9] Drishya S G, Kavitha Murugeshan "Towards Achieving Secured and
Decentralized Accountability in Cloud Computing" IJCTT May
2013

[10] Prema Mani, Janahanlal P Stephan "Enhanced Accountability
Framework for Data Sharing in the Cloud" ICCSE April 2013

[11] Drishya S G, Kavitha Murugeshan "Towards Achieving Secured and
Decentralized Accountability in Cloud Computing" IJCTT May
2013

[12] A. Squicciarini , S. Sundareswaran and D. Lin, " Preventing
Information Leakage from Indexing in the Cloud," Proc. IEEE Int'l
Conf. Cloud Computing, 2010

[13] B. Chun and A. C. Bavier ,"Decentralized Trust Management and
Accountability in Federated System," Proc. Ann. Hawaii Int'l Conf.
System Science (HICSS), 2004

[14] Drishya S G, Kavitha Murugeshan "Towards Achieving Secured and
Decentrali zed Accountability in Cloud Computing" IJCTT May
2013

Vikas Vitthal Lonare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 652-657

www.ijcsit.com 657

